"Evelyn was a modified dog..."

So, how can we modify the tree to do what we'd like?

As the code stands, it's set up to say that if a is in the type class Semilattice, you can create a SearchTree of as that you can efficiently search. What we want to say is that if you have some type a that has a function key :: a -> b where b is in the type class Semilattice, you can create a SearchTree of as that you can efficiently search based on the result of key. Then, if we have a list of (palindrome, position) pairs, our key function is just fst (the function that gives you the first item in a pair). Now, how to express that in Haskell?

UPDATE: come to think of it, wouldn't that subsume the existing cases? For them,

let key = id
UPDATE: OK, I should have remembered. You can create relationships between type classes. (Take a look at this diagram of relationships among types and type classes in the Standard Prelude.) So, it looks like I can say something like this:

{-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies #-}

class Semilattice a where
    meet :: a -> a -> a

class Semilattice k => Keyed r k | r -> k where
   key :: r -> k

The first type class definition is straight from Mr. van Laarhoven's code; a type is a Semilattice type if it has a meet function which satisfies the semilattice requirements for meet.

Keyed is a "multiparameter type class"; it sets up a relationship between a type r (intended to suggest "record") and a type k (intended to suggest "key"). "r -> k" is a "functional dependency". Those two features aren't in the Haskell 98 standard, but GHC supports them (if they're enabled in a pragma) and I suspect they're in Haskell'.

(Historical aside: you might not realize that the preceding paragraphs use terms that originate with Algol 68: "standard prelude" and "pragma". Algol 68 is a language that suffered from a lot of undeserved bad press; you really should read C.H. Lindsey's excellent paper on its history, and check out Algol 68 Genie. For those of you interested in functional programming, I should note that partial parametrization was up for addition to the standard and is implemented in Algol 68 Genie.)

So, I will proceed on this basis. It should be a simple rewrite of the Semilattice tree code, though I wish there were a way to have one version of it to do everything; code reuse is a Good Thing. The above lines make it past ghci, so I hope it's a good start. (Then, of course, the question is whether it really does help the Fair and Square program! OTOH, in a way I don't care, because the real goal was to learn more Haskell, not to mention that I was just lucky that the original blog post gave an example in which the Semilattice type was a pair.)


Popular posts from this blog

a longest path problem

No tutorial, I swear...

Bikeshedding leap years